Technical Assistance for the Deployment of Smart and Sustainable Mobility in the Western Balkans

CONNECTA-TRA-CRM-REG-MOB-07

Rail Technical Committee
1/12/2022, Brussels

Resilience for the rail sector in the Western Balkans
Author: CONNECTA

www.connecta-info.eu
CONTENTS

1. Introduction
2. Methodologies
3. Technical Solutions for the rail sector
4. EU Framework
5. Best Practices
6. Conclusions
Introduction – the bad news

Climate change is omnipresent. All projections are predicting sea level rise, ice retreat, temperature and precipitation increase. Consequently, risk increases in time.

We are filling it not only through weather extremes and singularities, but indirectly:

- agriculture
- industry
- transportation
- linked natural processes
- ...

source: https://www.ipcc.ch/
source: https://www.cee.ed.tum.de/
Introduction – in the Western Balkans

The Western Balkans region is no exception to the climate change witnessed in several extreme events (source https://public.emdat.be/data) in the past decade:

- Croatia flooding 2010, 2014 (0.1 bil. $ damage)
- B&H flooding 2010 and flooding and landsliding 2014 (0.5 bil. $ damage)
- Serbia flooding and landsliding 2014 (2.3 bil. $ damage)
- North Macedonia flooding 2013 and 2016
- Sporadic but frequent rockfall events in Montenegro, Serbia, N. Macedonia, Croatia

Kraljevo, Serbia (2020)
source: novosti.rs
Introduction – the impact on transport infrastructure

- Over the last decade, **climate resilience** in the context of infrastructure is becoming one of the major considerations and areas of combating against climate change impacts.

- According to the [Climate-Resilient Infrastructure Officer Handbook](#), climate-related shocks and stresses are **increasing in frequency and magnitude**, causing damages to infrastructure systems and disruptions in the provision of services. Yet there is **not sufficient investment** needed to infrastructure systems’ climate resilience.

- Worldwide, **all types of infrastructure will be affected by negative climate impacts** and therefore will be exposed to variety of risks. Increasing its resilience to these impacts will have a crucial role in avoiding substantial direct and indirect economic and financial damages.

- Climate change risks fall into two categories:
  - **Chronic stresses** – Hazards due to long-term changes in average climatic conditions, which are typified by their slow onset occurrence.
  - **Acute shocks** – Hazards due to extreme weather events.
Introduction - Rail heavily suffers from climate related natural hazards

1. High temperature
2. Low temperature
3. High precipitation
4. Low precipitation
5. High winds
6. Lightning and electrical storms
7. High see levels and storm surges

- Track
- Signaling
- Overhead Wiring
- Railway Civils (concerning trackside embankments, cuttings, drainage systems and vegetation)
- Railway Structures (track-carrying structures including bridges, tunnels, viaducts and culverts)
Methodologies – infrastructure adaptation framework

To enable transportation infrastructure to adapt to climate change and minimize the impact of extreme weather events, it is important to understand how railways are planned and managed and to identify weaknesses and strengths in dealing with climate change.

The most cost-efficient way to achieve this is to perform Risk Based Asset Management. This includes:

1. Identifying scope, variables, risks and data with the focus on climate change scenarios for the given territory and exposure and sensitivity analysis of rail assets to climate change.
2. Assessing and prioritizing risks. This stage includes vulnerability analysis carried out to identify critical elements of rail infrastructure.
3. Developing and selecting adaptation responses and strategies (risk mitigation measures). This stage outlines the identification, selection and prioritization of adaptation responses identified within stages 1 and 2.
4. Integrating results into decision making processes. Namely, the results of the stages 1-3 should be effectively incorporated into asset management and investment plans, traffic management strategies and other strategic documents and standards.
Methodologies – framework for risk-based assessment

Risk Based Asset Management

1. Determine Future Climate Change Impacts
2. Identify and Prioritize Affected Infrastructure
3. Assess Sensitivity and Adaptive Capacity
4. Prioritize Vulnerabilities
5. Develop Adaptation Strategies
6. Systematically Implement Adaptation Strategies
7. Reassess Regularly
Methodologies – assessing the asset performance loss

- External shock
- Major performance loss
- Residual performance
- Performance deterioration
- Downstream benefit
- More resilient
- Business as usual
- Permeant deterioration

System resilience / Level of Service

Time

Option A: Upfront investment
Option B: Co-benefits

Failure duration

This project is financed by the European Union
Methodologies – sensitivity and vulnerability analysis

Risk = <probability of adverse event> X <consequences>

Drivers → Hazard → Effective exposure

Drivers → Hazard → Exposure

Stressors → Sensitivity → Coping capacity → Vulnerability

Impact / Consequences

Meaning of arrows and shapes:
→ “may affect”
→ “may influence”
→ contributes to
□ Data analysis
□ Data aggregation

* IPCC AR 5: impacts, consequences and outcomes are synonymous.
# Methodologies – example of analysis for North Macedonia

<table>
<thead>
<tr>
<th>Climate hazards</th>
<th>Exposure</th>
<th>Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater frequency and intensity of extreme events -&gt; <strong>extreme rainfall events, floods, landslides.</strong></td>
<td>Rise in average temperatures and extreme temperatures -&gt; <strong>higher temperatures, heatwaves</strong></td>
<td><strong>Sensitivity.</strong> (1) Limited capacity of water drainage systems in urban areas to accommodate high volume of rainfall in short periods. (2) Inadequate construction materials and limited integration of risk-informed design options.</td>
</tr>
<tr>
<td></td>
<td>Variability of seasonal rainfall patterns -&gt; <strong>longer dry seasons, drought.</strong></td>
<td><strong>Coping capacity.</strong> (1) Limited capacity of key agencies to translate forecasts into meaningful guidance and anticipatory actions to protect infrastructure during extreme events. (2) Insufficient legal framework to ensure risk-informed infrastructure design.</td>
</tr>
</tbody>
</table>

**Exposure**

**River flooding.** The exposure to river flood hazard in North Macedonia is classified as **HIGH**, which means that potentially damaging and life-threatening river floods are expected to occur at least once in the next 10 years.

**Drought.** The exposure to drought hazard is classified as **MEDIUM**, which means that there is up to a 20% chance that droughts will occur in the coming 10 years.

**Landslides.** The landslide susceptibility of North Macedonia is classified as **HIGH**, which means that this area has rainfall patterns, terrain slope, geology, soil, land cover and that make localized landslides a frequent hazard phenomenon.

**Extreme heat.** The exposure to extreme heat hazard is classified as **MEDIUM**, which means that there is more than a 25% chance that at least one period of prolonged exposure to extreme heat, resulting in heat stress, will occur in the next five years.
Technical Solutions for the rail sector – type of measures

• The defining characteristic of climate-resilient infrastructure is that it is planned, designed, built and operated in a way that anticipates, prepares for, and adapts to changing climate conditions. It can also withstand, respond to, and recover rapidly from disruptions caused by these climate conditions. (OECD)

• Given the context-specific nature of climate adaptation, the measures used to achieve this will vary widely. In general, there are two broad categories of adaptation measures in this context:

  • **Structural adaptation measures**: e.g., changing the composition of rail tracks so that they do not deform in high temperatures, building seawalls or using different type of materials to offset heavy rainfalls.
  
  • **Management (or non-structural) adaptation measures**: e.g., changing the timing of maintenance to account for changing patterns of energy demand and supply, investment in early warning systems or purchasing insurance to address financial consequences of climate variability.
Technical Solutions for the rail sector – resilience

• Resilience is defined as the ability of a rail organization to provide services effectively and sustainably as the climate changes.
• It is a long-term holistic perspective of any threat to the functionality of the transport system.
• Improving resilience means:
  • increasing the ability of infrastructure to withstand potential threats
  • the capability of the system to rapidly recover from disruptive events.

ability to use backup facilities to provide service during disruption

ability to rapidly return to service after disruption

This also includes elements of Robustness - the ability to resist disruption;
## Technical Solutions for the rail sector - High temperature measures

<table>
<thead>
<tr>
<th>Rail infrastructure impact</th>
<th>Current adaptation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rail buckling and/or associated misalignment problems</strong></td>
<td>Change rail installation procedure to increase temperature threshold for thermal expansion</td>
</tr>
<tr>
<td></td>
<td>Replacement of jointed track with continuously welded rail</td>
</tr>
<tr>
<td></td>
<td>Upgrade timber switches and crossings to concrete</td>
</tr>
<tr>
<td></td>
<td>Painting rails white in areas of known high risk to thermal expansion in direct sunlight</td>
</tr>
<tr>
<td><strong>Expansion of moveable assets such as swing bridges hindering operation</strong></td>
<td>Sprinkler systems</td>
</tr>
<tr>
<td></td>
<td>Replacement of bridges with heat resistant materials with lower thermal expansion coefficient</td>
</tr>
<tr>
<td><strong>General increase in failure rate of assets in high temperatures</strong></td>
<td>Use of coolers, fans and air conditioning to improve tolerance of signalling equipment</td>
</tr>
<tr>
<td></td>
<td>Double-skinned equipment casing to assist cooling</td>
</tr>
<tr>
<td></td>
<td>Sun hoods to deflect heat</td>
</tr>
<tr>
<td><strong>Sagging of the overhead line equipment</strong></td>
<td>Removal of fixed termination overhead line equipment</td>
</tr>
<tr>
<td></td>
<td>Improved balance weight and head span technologies</td>
</tr>
<tr>
<td><strong>Increased fire risk</strong></td>
<td>Vegetation management along tracks</td>
</tr>
<tr>
<td></td>
<td>Establishment of tree-free zones in rail corridor</td>
</tr>
</tbody>
</table>
## Technical Solutions for the rail sector - Low temperature measures

<table>
<thead>
<tr>
<th>Rail infrastructure impact</th>
<th>Current adaptation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail breaks, cracks and/or associated misalignment problems</td>
<td>Change rail installation procedure to increase temperature threshold for thermal expansion</td>
</tr>
<tr>
<td>Snow blocking tracks obscuring signals and preventing train contact with conductor rails on ‘third rail’ networks</td>
<td>Use of signal hoods to prevent build-up of snow</td>
</tr>
<tr>
<td></td>
<td>Potential heating of conductor rails</td>
</tr>
<tr>
<td></td>
<td>Points heater installation</td>
</tr>
<tr>
<td>Ice-jam flooding damaging infrastructure, particularly bridges</td>
<td>Installation of dams, ice booms, ice-retention structures, dykes, or various channel modifications</td>
</tr>
</tbody>
</table>
# Technical Solutions for the rail sector - High & low precipitation measures

<table>
<thead>
<tr>
<th>High precipitation - Rail infrastructure impact</th>
<th>Current adaptation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Standing water fouling track ballast</strong></td>
<td>Expanding drainage capacity for infrastructure including culvert size, design for new flood event thresholds</td>
</tr>
<tr>
<td></td>
<td>Increasing maintenance including clearing debris from culverts to reduce flooding</td>
</tr>
<tr>
<td></td>
<td>Installation of emergency culverts</td>
</tr>
<tr>
<td></td>
<td>Installation of pumped drainage solutions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low precipitation - Rail infrastructure impact</th>
<th>Current adaptation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Increased risk of earthworks failures due to desiccation</strong></td>
<td>De-vegetation programmes</td>
</tr>
<tr>
<td></td>
<td>Re-ballasting and tamping interventions</td>
</tr>
</tbody>
</table>
## Technical Solutions for the rail sector - High winds & lightning measures

<table>
<thead>
<tr>
<th>High winds - Rail infrastructure impact</th>
<th>Current adaptation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased risk of leaf fall leading to low track adhesion and damaged trees and debris falling onto track</td>
<td>Devegetation programmes&lt;br&gt;Establishment of tree-free zones in rail corridor</td>
</tr>
<tr>
<td>Excessive wind loading on structures such as masts and towers</td>
<td>Strengthening of existing equipment, build in resilience to design of new equipment&lt;br&gt;Improved overhead wire tensioning systems</td>
</tr>
<tr>
<td>Significant wave formation causing damage to the track</td>
<td>Elevate infrastructure&lt;br&gt;Improved flood defences</td>
</tr>
<tr>
<td>Increased risk of damage to bridges in high winds</td>
<td>Use of guide vanes&lt;br&gt;Install damping devices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lightning &amp; electrical storms - Rail infrastructure impact</th>
<th>Current adaptation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to buildings and structures from lightning strikes</td>
<td>Install lightning conductors&lt;br&gt;Fitment of surge protection</td>
</tr>
<tr>
<td>Forest fires caused by lightning and damage to lineside trees from lightning strikes</td>
<td>Establishment of tree-free zones in rail corridor</td>
</tr>
</tbody>
</table>
# Technical Solutions for the rail sector - High sea levels measures

<table>
<thead>
<tr>
<th>Rail infrastructure impact</th>
<th>Current adaptation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal erosion of earthworks, structures and track</td>
<td>Elevate infrastructure</td>
</tr>
<tr>
<td></td>
<td>Install rock armour</td>
</tr>
<tr>
<td>Seawater inundation of earthworks, structures and track</td>
<td>Elevate infrastructure</td>
</tr>
<tr>
<td></td>
<td>Raise sea walls</td>
</tr>
<tr>
<td>Damage to sea walls</td>
<td>Flood defences designed for new floor event thresholds</td>
</tr>
<tr>
<td></td>
<td>Install rock armour</td>
</tr>
</tbody>
</table>
EU Framework

- **Candidates for European Union** (EU) membership commit to transposing the EU legal framework into its national legal system. At the EU level, the umbrella document related to adaptation to climate change is the new EU Strategy on Adaptation to Climate Change, amending the EU Strategy on Adaptation to Climate Change enacted in 2013.

- The new Strategy was adopted in 2021. It sets out how the European Union can adapt to the unavoidable impacts of climate change and become climate resilient by 2050. It is largely focused on **investing in resilient, climate-proof infrastructure**. It states that in order to minimise the risk of disasters and be cost-effective over its lifetime, infrastructure investments should be climate resilient.

- The EC developed extensive climate proofing guidance for new major infrastructure projects called **Technical guidance on the climate proofing of infrastructure in the period 2021-2027**. These guidelines provide comprehensive recommendations on how to integrate the climate vulnerability and risk assessment from the beginning of the project development process.

- The **EU taxonomy** (Regulation (EU) 2020/852) represents a new comprehensive classification system for standardising "green" economic activities and is primarily designed for use in the financial sector. It consists of six main environmental objectives, that are simultaneously tested for an investment/measure.
Do No Significant Harm assessment for EU-funded projects – in line with the EU Taxonomy

- 2 step process to ensure that climate change impacts are incorporated and ensure that investments / policies are not “mal-adaptation”:
  - Does the action require a thorough assessment of the measure in terms of the 'Do no significant harm' principle?
  - Is the measure expected to lead to an increased adverse impact of the current climate and the expected future climate on the measure itself or on humans, nature or property?

- Additional questions related to water resources, climate change mitigation, etc. with guidance on all aspects being currently drafted by the European Commission


- **Do No Significant Harm approach described here:** [https://ec.europa.eu/info/sites/default/files/2021_02_18_epc_do_not_significant_harm_technical_guidance_by_the_commission.pdf](https://ec.europa.eu/info/sites/default/files/2021_02_18_epc_do_not_significant_harm_technical_guidance_by_the_commission.pdf)
Best Practices - 1

- Based on **Western Balkans Investment Framework** (WBIF) Grants for Technical Assistance Guidelines issued in January 2021, which defines **eligibility criteria for the projects to be financed**, tracking climate finance commitments is a responsibility of donors or financiers, not of the Beneficiaries. In this context, the assessment of contributions to climate finance (mitigation and adaptation) **examines whether climate change is the principal objective** of a project, one of the (significant) objectives or it is not an objective at all.

- The grant application should provide information on potential contribution of the project to **GHG emissions reduction and assessment of climate risks**, including the measures that would improve the climate resilience of the project.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Elaboration</th>
</tr>
</thead>
</table>
| Average temperature rises and increased risk of heat waves                | • Regions where average temperature is already high;  
|                                                                           | • Urban centres, where the 'urban heat island effect' will exacerbate high temperatures;  
|                                                                           | • Regions with limited freshwater supplies.                                                                 |
| Mean sea level rise, coastal flooding and erosion                         | • Coastal areas and islands.                                                                                                                                 |
| Decreased seasonal precipitation, increased risks of drought, wildfire    | • Regions where rainfall is already scarce;  
|                                                                           | • Locations where current demand for water almost matches supply or outstrips;  
|                                                                           | • Locations where water quality is poor;  
|                                                                           | • Regions prone to wildfire;  
|                                                                           | • Trans-boundary river basins where tensions over water use already exist.                                                                                                                                 |
| Increased seasonal precipitation and more rapid snow melt – increased risk of river flooding, flash floods, or soil erosion | • Regions with high rainfall;  
|                                                                           | • Estuaries, deltas, river floodplains;  
|                                                                           | • Mountainous regions;  
|                                                                           | • Locations prone to landslips;  
|                                                                           | • Urban centres with storm water systems not designed to manage intense rainstorms;  
|                                                                           | • Contaminated environments (land, water).                                                                                                                                 |
| Possible increase in storm intensity and frequency                        | • Areas at risk of storms;  
|                                                                           | • Urban centres at risk from storms.                                                                                                                                 |
 Operators in the UK shall carry out **climate change risk assessment for each new environmental permit application** (for certain installations and projects), if they expect to operate for more than 5 years. When completing the permit application form, they must calculate their **climate change risk test result**.

The screening tool - three questions to which there are different answers with different weights. A combined score of five or more requires the operator to complete and submit a climate change risk assessment as part of the application form. If the screening result is lower than five, the operator does not need to submit his risk assessment with the application form, but must still keep it as part of his environmental management system.

The next step for the operator is to find measures to manage the significant risks identified. These measures could:

- manage risk by introducing control measures to address climate change hazard, its impact on business or environmental impact
- risk transfer, such as insurance
- eliminate the risk, for example by changing the hazard elimination procedure

The UK Environment Agency provides examples in the sectoral guides for climate change risk assessment, which can guide operators in developing their climate adaptation plans.
Best Practices - 3

Enhancing Environmental Performance and Climate Proofing of Infrastructure Investments in the Western Balkan Region from an EU integration perspective” (CLIMAPROOF)

The project CLIMAPROOF was financed by the Austrian Development Cooperation (ADC) and implemented by UNEP (2017-2021).

ClimaProof aimed to increase technical capacities of the relevant national authorities in the field of climate proofing of infrastructure and green infrastructure.

For large infrastructural projects detailed and specific climate projections during the planning phase will be prepared which will allow integration of adaptation measures in both the planning and realisation phase, thus maximizing resilience to climate variability and extreme weather events.
Ministry of Transport in Vietnam has carried out a risk assessment of climate related hazards, including an update of the design standards, operations, and a global disaster risk management system.
Conclusions

• At the regional level it is needed to identify main gaps and set strategies to overcome them.

• In case of natural hazards and climate change, it is essential to include expert groups capable of delivering primary inputs for all subsequent assessments.

• Climate related methodology needs to enter legislation after reaching overall consensus, and after being given a positive feedback from the end-users.

• Railway Undertakings need to have long term plans (5y) and can incorporate strategies towards database generation, digitization, automation etc…and global asset management!

• Even though more expensive, long-term solutions and planning should be encouraged

• An investment today needs to be compared to loss avoided in the future

• Multiple benefits are also crucial for prioritizing investments, which also requires networking with potentially interested groups
Contact information

Seth Landau
Sustainability expert, Component 1 Co-Leader
E. seth@ecoltdgroup.com
Mob/WhatsApp/Viber: +385 91 9033666
Skype: seth.landau

Danijel Vučković
Project Manager
E. danijel.vuckovic@connecta-ta.eu
M. +381 (0)60 63 555 00
Skype: vuckopk79
Questions and Discussion

Any comments/suggestions?
Thank you!

CONNECTA Project team

Chris Germanacos, Team Leader; Transport Expert
chris.germanacos@connecta-ta.eu
Giorgos Xanthakos, Transport Key Expert, Deputy Team Leader
giorgos.xanthakos@connecta-ta.eu
Danijel Vuckovic, Project Manager
danijel.vuckovic@connecta-ta.eu
Seth Landau, Sustainability Expert
seth@ecoltdgroup.com

www.connecta-info.eu